Preparation and Structure of the Compounds SrVO₃ and Sr₂VO₄

M. J. REY,* PH. DEHAUDT,* J. C. JOUBERT,† B. LAMBERT-ANDRON,‡ M. CYROT,§ and F. CYROT-LACKMANN¶

*Centre d'Etudes Nucléaires de Grenoble (DMG/SEM/LDC), 52 avenue des Martyrs BP 85X, 38042 Grenoble Cedex, France, †Laboratoire des matériaux et du génie physique de l'ENSPG, domaine universitaire, 38400 Saint Martin d'Hères, France, ‡Laboratoire de Cristallographie, 25 avenue des Martyrs, 38000 Grenoble, France, \$Laboratoire Louis Néel, 25 avenue des Martyrs, 38000 Grenoble, France, and ¶Laboratoire d'Etudes des Propriétés Electriques des Solides, 25 avenue des Martyrs, 38000 Grenoble, France

Received January 29, 1990

The compounds $SrVO_3$ and Sr_2VO_4 have been synthesized by decomposition of the nitrates in air followed by high purity hydrogen reduction. $SrVO_3$ crystallizes in a cubic perovskite structure with a = 3.841 Å. This result shows the incorrectness of its A.S.T.M. card. The structure of Sr_2VO_4 has been studied by X-ray and neutron diffraction measurements. Sr_2VO_4 presents a tetragonal K₂NiF₄-type structure with a = b = 3.837 Å and c = 12.576 Å. © 1990 Academic Press, Inc.

Introduction

Since the discovery of superconductivity below 30 K in the La-Ba-Cu-O system (1), there has been extensive research work on new compounds based on the perovskite structure for better understanding of the mechanism for the high- T_c superconductivity. We have been interested in compounds where the cation Cu d^9 in high- T_c superconductors would be replaced by a d^1 cation, for example, the ion V⁴⁺. This present work deals with the synthesis and the cristallographic study of the two compounds SrVO₃ and Sr₂VO₄.

Experimental

A slurry formed by a suspension of vanadium oxide V_2O_5 in a strontium nitrate $Sr(NO_3)_2$ solution (in proportions Sr/V = 1for $SrVO_3$ and Sr/V = 2 for Sr_2VO_4) is transformed into powder by spray-drying. The obtained mixture is calcined in air in order to decompose the nitrates (700°C—7 hr for $SrVO_3$ and 800°C—5 hr for Sr_2VO_4). Finally, the V⁵⁺ ion is reduced to V⁴⁺ by a treatment in pure hydrogen in a metallic furnace: For $SrVO_3$, the calcined powder is pressed into 8-mm-diameter pellets at 200 MPa and treated at 1000°C for 24 hr. For Sr_2VO_4 , the pellets pressed at 200 MPa and transformed into 250- μ m-diameter granules are treated at 1000°C for 48 hr.

The resulting materials, after each treatment, were characterized by X-ray diffraction with a Siemens goniometer using $CoK\alpha$ radiations. The structural study of Sr_2VO_4 was completed by neutron diffraction at the Institute Laue-Langevin (Grenoble). Thermogravimetric analyses were carried out with a Setaram TB 85 16-18 thermobalance.

Results and Discussion

1. Study of SrVO₃

After the intermediate calcination in air at 700°C, X-ray diffraction analysis shows the presence of the phases $Sr_2V_2O_7$ and $Sr_3V_2O_8$. The Sr/V ratio (= 1) suggests the presence of unreacted vanadium oxide not detectable by the X-ray analysis. The reduction under hydrogen atmosphere of the calcinated mixture was first followed by thermogravimetric analysis ($1000^{\circ}C-1$ hr). The weight loss observed, 4.7% for 4.1% in theory, means that the V⁵⁺ ion has been reduced to V⁴⁺ (cf. Fig. 1). The powder, originally white, turned black.

After the reduction $(1000^{\circ}C-24 \text{ hr})$, a single phase was formed and presents a cubic perovskite-like structure iostopic with the so-called compound SrVO_{2.5} (2) (cf. Fig. 2) (cf. A.S.T.M. Card 11-25). The phase can be written as SrVO_{3-x}, where x represents the amount of oxygen vacancies. In order to determine the oxygen deficiency in the compound, a controlled oxidation in He-1000 ppm O₂ has been undertaken by thermogravimetric analysis (cf. Fig. 3). This experiment shows that the filling of vacancies occurs before the oxidation of the compound SrVO₃ into Sr₂V₂O₇.

From the thermogravimetric data, we can, on the one hand, determine the value of x if we suppose that the compound is $SrVO_{3.00}$ at the point of inflection of the curve and, on the other hand, control the formation of stoichiometric $SrVO_{3.00}$.

FIG. 1. Sr/V = 1: thermogravimetric curve of the reduction under H₂ atmosphere (1000°C--1 hr).

FIG. 2. Sr/V = 1: X-ray diffraction pattern of the H₂-annealed sample (1000°C-24 hr).

FIG. 3. Sr/V = 1: thermogravimetric curve of the controlled oxidation of $SrVO_{3-x}$.

FIG. 4. X-ray diffraction pattern of SrVO_{3.00}.

After two agreeing experiments, we can say that the H₂-annealed sample is $SrVO_{2.88(\pm 0.01)}$.

X-ray diffraction patterns of SrVO_{2.88} (cf. Fig. 2) and SrVO_{3.00} (cf. Fig. 4) are characteristic of a cubic perovskite structure, with a = 3.846(6) Å and 3.840(9) Å, respectively. A list of interplanar spacings, $h \ k \ l$ indices, and relative intensities is presented in Tables I and II.

These results show that the compound $SrVO_{3,00}$ crystallizes in a cubic and not orthorhombic perovskite structure as reported by Palanisamy *et al.* (3) (cf. A.S.T.M. Card 32-1267). We identified the orthorhombic structure, proposed by him, as a mixture of $SrVO_3$ and a small amount of orthovanadate $Sr_3V_2O_8$, probably containing undetected vanadium oxide, which results from an insufficient reduction, for example, at 1000°C for 1 hr, as we have observed (cf. Fig. 5).

TABLE I

LIST OF INTERPLANAR Spacings, $h \ k \ l$ Indices, and Relative Intensities of SrVO_{2,88}

$d_{\rm obsd}({\rm \AA})$	hkl	I/I _{max}
3.862	100	2
2.727	110	100
2.225	111	22
1.926	200	50
1.723	210	3
1.572	211	51
1.361	220	33
1.283	300	2
1.230	310	28
1.160	311	10
1.111	222	15
1.067	320	2

TABLE II

LIST OF INTERPLANAR Spacings, $h \ k \ l$ Indices, and Relative Intensities of SrVO_{3.00}

h k l	I/I_{\max}
100	2
110	100
111	23
200	49
210	3
211	48
220	32
300	2
310	27
311	10
222	15
320	2
	$\begin{array}{c} h \ k \ l \\ \hline 1 \ 0 \ 0 \\ 1 \ 1 \ 0 \\ 1 \ 1 \ 0 \\ 2 \ 1 \ 0 \\ 2 \ 1 \ 0 \\ 2 \ 1 \ 0 \\ 2 \ 1 \ 0 \\ 2 \ 1 \ 0 \\ 3 \ 1 \ 0 \\ 3 \ 1 \ 0 \\ 3 \ 1 \ 1 \\ 2 \ 2 \ 2 \\ 3 \ 2 \ 0 \\ \end{array}$

In conclusion, $SrVO_3$ can be synthesized as a pure phase only by annealing the sample under H₂ atmosphere at 1000°C for several hours.

2. Study of Sr₂VO₄

After intermediate firing in air, the powder is mainly constituted by hydroxylapatite $Sr_{10}(VO_4)_6(OH)_2$ with $Sr(OH)_2 \cdot H_2O$ and $SrCO_3$.

The H₂-annealed sample presents an Xray pattern almost identical with Sr_2TiO_4 (structure K_2NiF_4): this has been indentified as Sr_2VO_4 which appears nearly pure on the diffractogram with traces of strontium oxide SrO, strontium hydroxide $Sr(OH)_2 \cdot H_2O$, and probably $SrVO_3$, not detectable because its main spectrum lines are hidden by these of Sr_2VO_4 (cf. Fig. 6). The compound Sr_2VO_4 is black.

High purity hydrogen is required to syn-

FIG. 5. Sr/V = 1: X-ray diffraction pattern of the H₂-annealed sample (1000°C-1 hr).

FIG. 6. Sr/V = 2: X-ray diffraction pattern of the H₂-annealed sample (1000°C-48 hr).

TABLE III

LIST OF INTERPLANAR Spacings, $h \ k \ l$ Indices, and Relative Intensities of Sr_2VO_4

$d_{\rm obsd}({ m \AA})$	h k l	I/I _{max}
6.349	002	4
3.686	101	7
3.158	004	11
3.840	103	100
2.722	110	82
2.498	112	4
2.102	006	36
2.058	114	33
1.921	200	54
1.828	202	2
1.702	211	3
1.661	116	20
1.639	204	8
1.630	107	9
1.590	213	51
1.574	008	2
1.416	206	30

TABLE IV Positional and Thermal Parameters for Sr₂VO₄

Atom	Position	x	у	z	$B_{\rm eq}({ m \AA}^2)$
Sr	4 <i>e</i>	0	0	0.35438(25)	0.25(10)
v	2a	0	0	0	0.3 not refined
O_1	4c	0	$\frac{1}{2}$	0	0.38(10)
O_2	4 <i>e</i>	0	0	0.15778(28)	0.40(10)

INTERATOMIC DISTANCES $(Å)$ for Sr_2VO_4				
$Sr-V(\times 4)$	3.271(14)			
$Sr-O_1(\times 4)$	2.650(17)			
$Sr-O_2(\times 4)$	2.715(3)			
$Sr-O_2(\times 1)$	2.477(26)			
$V-O_1(\times 4)$	1.917(2)			
$V-O_2(\times 2)$	1.986(24)			
$O_1 - O_1 (\times 4)$	2.711(2)			
$O_1 - O_2(\times 4)$	2.760(16)			
1 20 /				

thesize pure Sr_2VO_4 . It cannot be prepared by an industrial mixture of $N_2 + 10\%$ vol. H_2 at 1000°C. Oxygen and water traces present in the diluted hydrogen destabilize the valency IV state of vanadium compound in the Sr_2VO_4 structure. However, $SrVO_3$ can be synthesized in such a gas.

Sr₂VO₄ cristallizes in a tetragonal unit cell, space group 14/mmm with a = b =3.837(1) Å and c = 12.576(3) Å. A list of interplanar spacings, h k l indices, and relative intensities is presented in Table III.

Neutron diffraction experiments permit the calculations of atomic positions and interatomic distances in the cell (cf. Tables IV and V). Cell parameters, determined from neutron diffraction measurements at 200 K, are a = b = 3.8340(4) Å and c =12.587(13) Å. (cf. Fig. 7).

Physical Properties

We recall here the principal results reported in a previous publication (4). $SrVO_3$ oxide is a metallic conductor and exhibits Pauli paramagnetic behavior (2, 5). Sr_2VO_4 compound presents the same physical

properties as La_2CuO_4 : it is metallic and antiferromagnetic below 10 K (4).

To be able to make Sr_2VO_4 insulating and possibly a superconductor, it would be necessary to substitute monovalent ions for strontium. A lamellar structure would also be formed with vanadium ions in the mixed valency IV/V. All attempts to dope Sr_2VO_4 were not successful.

Acknowledgments

We thank G. Fourcaudot for electrical measurements and J. Beille for magnetic experiments.

References

- 1. J. B. BEDNORZ AND K. A. MULLER, Z. Phys. B 64, 189 (1986).
- M. KESTIGIAN, J. G. DICKINSON, AND R. WARD, J. Amer. Chem. Soc. 79, 5598 (1957).
- 3. T. PALANISAMY, J. GOPALAKRISHNAN, AND M. V. C. SASTRI, A. Anorg. Allg. Chem. 415, 275 (1975).
- M. CYROT, B. LAMBERT-ANDRON, J. L. SOUBEY-ROUX, M. J. REY, PH. DEHAUDT, F. CYROT-LACK-MANN, G. FOURCAUDOT, J. BEILLE, AND J. L. THOLENCE, J. Solid State Chem., in press.
- 5. B. L. CHAMBERLAND AND P. S. DANIELSON, J. Solid State Chem. 3, 243 (1971).